SG函数和SG定理(Sprague_Grundy)
游戏
1272 人阅读
|
0 人回复
|
|
<
一、必胜点和必败点的概念
P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
必胜点和必败点的性质:
1、所有终结点是 必败点 P 。(我们以此为根本前提进行推理,换句话说,我们以此为假设)
2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以hdu 1847 Good Luck in CET-4 Everybody!为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
n : 0 1 2 3 4 5 6 ...
position: P N N P N N P ...
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
二、Sprague-Grundy定理(SG定理)
游戏和的SG函数即是各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。
(NIM游戏:https://blog.csdn.net/luomingjun12315/article/details/45479073)
三、Sprague-Grundy函数(SG函数)
首先界说mex(minimal excludant)运算,这是施加于一个聚集的运算,表现最小的不属于这个聚集的非负整数。比方mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于任意状态 x , 界说 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的聚集。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 聚集S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
四、例题
http://poj.org/problem?id=2975
http://poj.org/problem?id=2960
https://ac.nowcoder.com/acm/contest/338/I
五、参考文章
https://blog.csdn.net/luomingjun12315/article/details/45555495
https://www.cnblogs.com/ECJTUACM-873284962/p/6921829.html
https://blog.csdn.net/kamisama123/article/details/77649118
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |
1、本网站属于个人的非赢利性网站,转载的文章遵循原作者的版权声明,如果原文没有版权声明,按照目前互联网开放的原则,我们将在不通知作者的情况下,转载文章;如果原文明确注明“禁止转载”,我们一定不会转载。如果我们转载的文章不符合作者的版权声明或者作者不想让我们转载您的文章的话,请您发送邮箱:Cdnjson@163.com提供相关证明,我们将积极配合您!
2、本网站转载文章仅为传播更多信息之目的,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证信息的正确性和完整性,且不对因信息的不正确或遗漏导致的任何损失或损害承担责任。
3、任何透过本网站网页而链接及得到的资讯、产品及服务,本网站概不负责,亦不负任何法律责任。
4、本网站所刊发、转载的文章,其版权均归原作者所有,如其他媒体、网站或个人从本网下载使用,请在转载有关文章时务必尊重该文章的著作权,保留本网注明的“稿件来源”,并自负版权等法律责任。
|
|
|
|
|
|
|
|